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Abstract

We explore a new dimension of dependence of hedge fund returns with the market
portfolio by examining linear correlation and tail dependence conditional on the financial
cycle. Using a large sample of hedge funds that are considered “market neutral”, we doc-
ument that the low correlation of market neutral hedge funds with the market is composed
of a negative correlation during bear periods and a positive one during bull periods. In
contrast, the remaining styles present a positive correlation throughout the cycle. We also
find that while they present tail dependence during bull periods, we cannot reject tail neu-
trality in times of financial turmoil. Consistent with these results, we show that market
neutral hedge funds present state timing ability that cannot be explained by other forms of
timing ability. Using individual hedge fund data, we find that funds that implement share
restrictions are more likely to time the state.
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1 Introduction

It is widely thought that some hedge funds offer an advantage over other investment vehi-

cles in that they are immune from market fluctuations that makes them attractive to investors,

especially during uncertain times. Indeed, numerous empirical studies have found low corre-

lations between hedge fund returns and market returns (see for example, Agarwal and Naik

(2004) and Fung and Hsieh (1999)). This characteristic has propelled growth in an industry

whose size was estimated to have swollen from $100 billion in 1997 to $3.018 trillion in 2017.1

Knowing the dependence that exists between hedge funds and asset markets is particularly

important, as crashes in this industry might lead to potentially devastating effects in financial

markets, given the leveraged positions hedge fund managers take. In particular, policymakers

have implicated hedge funds as having had a role in several crises, the best known of which

is the near-collapse of LTCM in 1998.2 These findings, hence, underscore the need for a

more thorough understanding of the dependence that exists between hedge funds and the stock

market, and its implications for their trading behavior.

Hedge funds are usually classified by their investment styles. One such investment style,

called market neutral, refers to “funds that actively seek to avoid major risk factors, but take

bets on relative price movements utilising strategies such as long-short equity, stock index

arbitrage, convertible bond arbitrage, and fixed income arbitrage” (Fung and Hsieh (1999), p.

319). They are not only one of the largest, but are also among the most popular investment

styles in the industry.3 As such, empirical literature has investigated the “neutrality” of these

funds to the market index, of which there are numerous definitions. The most prominent one,

which is the focus of this paper, is the “neutrality” of these funds to market tail risk (Patton

(2009)). While numerous studies have found that there is little to no correlation between these

funds and the market index, there is no consensus on whether they are exposed to tail risk or

not. Most of these papers assume, however, that the joint distribution of hedge fund and asset

market index returns is fairly static over time. This assumption appears to be contradictory, as it

is well known that the trading strategies hedge fund managers employ tend to be dynamic (see,

for example, Agarwal and Naik (2004), Fung and Hsieh (2001), and Patton and Ramadorai

1Source: 2017 Credit Suisse Global Survey of Hedge Fund Manager Appetite and Activity.
2Ben-David et al. (2012) document that hedge funds in the US got rid of their equity holdings during the 2007-

2009 financial crisis. Meanwhile, Adams et al. (2014) finds that spillovers from hedge funds to other financial
markets increased in periods of financial distress.

3In the 2017 Credit Suisse Global Survey of Hedge Fund Manager Appetite and Activity, market neutral hedge
funds account for 29% of the total net demand of institutional investors, the second largest of all categories.
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(2013)).

The first departure of this paper from previous literature is to study how dependence be-

tween market neutral hedge fund and stock returns changes conditional on the state of the

market, both at the aggregate and individual fund level. This provides us with an intuitive

manner to link the evolution of hedge fund and stock market price movements to financial

cycles. To quantify this dependence, we estimate a Student’s t-copula model with dependence

parameters that vary according to the state. We identify financial cycles via a simple algo-

rithm that detects bull and bear periods through stock price movements (Pagan and Sossounov

(2003)).

We find that the bull and bear periods this algorithm captures coincide not only with NBER

recession and expansion periods, but also with other significant events that have had an im-

pact on financial markets, such as the European sovereign debt crisis, and the recent Chinese

stock market crash. The result of our estimations indicate that the correlation between market

neutral hedge funds and the stock market changes according to the state. In particular, the

correlation is negative in bear periods, and positive in bull periods. This result is unique to

market neutral hedge funds, as other hedge funds that exhibit similar characteristics in terms

of trading strategies appear to have positive correlation in both bull and bear periods.

The fact that the correlation between market neutral hedge fund returns and that of the

market flips sign suggests that managers of this fund style pursue trading strategies that arise

from varying business conditions. To this end, the second contribution of this paper is to in-

vestigate whether market neutral hedge funds display the ability to time financial cycles. We

utilise the Pagan and Sossounov (2003) state indicator to measure timing ability and modify

the Henriksson and Merton (1981) market timing model. We estimate three state timing mod-

els: the single-factor model, the Fama French three-factor model, and the four factor model of

Carhart (1997). Compared to the other hedge fund styles in our study, we find that market neu-

tral hedge funds exhibit significant state timing ability that cannot be explained by other types

of timing ability, such as return, volatility, and liquidity timing. Our results are also robust

to the definition of the economic state, which suggest that hedge fund managers incorporate

information about financial and business cycles in their trading decisions. Moreover, our re-

sults are robust to alternative explanations. In particular, we recognize that some of the assets

that hedge funds hold might be illiquid, or have nonlinear payoffs. To this end, we conduct

tests that control for illiquid holdings and options trading, and show that our evidence of state
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timing ability is robust to these explanations. Finally, using individual hedge fund data, we

find that market neutral hedge funds that have lockup periods appear to time better.

Shifts in dependence between hedge funds and the stock market have important conse-

quences for risk management. In this light, we consider how conditional Value-at-Risk (CVaR)

changes according to the economic state. Counterintuitively, we find that the CVaR for market

neutral hedge funds is higher in bear periods than in bull periods. This is a consequence of the

negative correlation during these periods, which counteracts the shift in the marginal distribu-

tions of market neutral hedge funds and the market. Our analysis suggests that if hedge fund

managers do not take into account tail risk, then they would accrue greater losses than what

they would have otherwise; meanwhile, hedge fund managers who do not take into account

information from states accumulate more equity than they would have otherwise.

Our paper connects with the vast literature that studies the dependence between hedge

funds and the stock market. Brown and Spitzer (2006) propose a tail neutrality measure which

uses a simple binomial test for independence, and find that hedge funds exhibit tail depen-

dence. They also confirm the result via logit regressions similar to those employed by Boyson

et al. (2010). Patton (2009), meanwhile, proposes a test statistic using results from extreme

value theory and concludes that there is no tail dependence between market neutral hedge

funds and the market index. The analyses performed in the previous papers, however, are

essentially static. Meanwhile, Distaso et al. (2010) use hedge fund index data to model depen-

dence using a time-varying copula, and find that there does not exist tail dependence between

hedge fund and market index returns. Finally, Kelly and Jiang (2012) utilise a time-varing

tail risk measure and estimate that the average exposure to tail risk of these funds is negative,

which they take as evidence of the sensitivity of hedge funds to tail risks.4 With respect to

these papers, we study how dependence varies according to the financial state, which provides

an intuitive link to empirical studies that have looked at hedge fund trading behavior during

downturns, such as Ben-David et al. (2012). Moreover, our approach allows us to study both

tail dependence and correlation jointly.

Our paper is also related to empirical work that aims to understand hedge fund timing

ability (Chen (2007), Chen and Liang (2007) and Cao et al. (2013)). The result of these

papers indicate that some hedge funds exhibit return, volatility, and liquidity timing abilities.

Relative to these papers, our results suggest that market neutral hedge fund managers exhibit
4Patton and Ramadorai (2013) use a dynamic framework to analyse risk exposures of hedge funds to different

asset classes. However, they do not explicitly study tail dependence.
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an additional timing skill, that of the ability to adjust their risk exposures using information

on financial cycles5. This in turn, allows them to achieve their stated fund objectives. To the

best of our knowledge, our paper is the first to study hedge fund performance and its variation

over the financial cycle, which has been widely studied in the context of mutual funds (see

Moskowitz (2000), De Souza and Lynch (2012), and Kacperczyk et al. (2014), for recent

work).

Finally, our paper contributes to studies that attempt to understand asymmetric dependence

structures in financial markets using copula methods (see the survey article of Patton (2012)

for a review). Most of these papers do not condition on the state of the economy, or infer

them using parametric models (e.g., Rodriguez (2007) and Okimoto (2008), among others). In

contrast, our approach to identifying states is based on a parsimonious algorithm that is widely

used in business cycle dating.

The rest of the paper is organised as follows: Section 2 describes the data employed in this

empirical study. We present the copula model for dependence and the results of our estimation

in section 3. In section 4, we study whether market neutral hedge funds exhibit state timing.

Section 5 shows the implications of our results for risk management. We present the results

of dependence and state timing for individual hedge funds in section 6. Finally, section 7

concludes. Additional results and technical details are gathered in the Supplemental Material.

2 Data

2.1 Defining states

To identify bull and bear periods, we adopt the definition proposed by Pagan and Sossounov

(2003); that is, “... bull (bear) markets correspond to periods of generally increasing (decreas-

ing) stock market prices.” As they emphasise, this definition implies that the stock market has

moved from a bull to a bear state when prices have declined for a substantial period since

their previous (local) peak. This definition does not preclude the possibility of negative return

realisations in bull periods or positive return realisations in bear periods. To determine bull

and bear periods in the sample, Pagan and Sossounov (2003) adapt the algorithm in Bry and

Boschan (1971), a commonly used algorithm to detect turning points in the business cycle

5Bali et al. (2014), using a macroeconomic uncertainty index constructed from available state information,
show that market neutral hedge fund managers are unable to time macroeconomic risk. The reason why they are
unable to find this result, however, is perhaps because they do not account for financial cycles.
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literature. Section 1 of the Supplemental Material provides details on the dating algorithm.

We employ the S&P 500 as the market index to identify bull and bear periods and for the

subsequent analyses in the paper. Table 1 describes the bear and bull periods identified by

the algorithm. Panel A compares the results of the Pagan and Sossounov (2003) algorithm

with that of the NBER. As can be seen, the correspondence is good, with the correlation

between the two periods being approximately 58 percent. The dating algorithm we employ,

however, identifies two additional bear periods. The first, from March to September 2011,

corresponds to events in the European sovereign debt crisis related to concerns over Greek

public debt refinancing. Meanwhile, the second, from June to September 2015, coincides with

the most turbulent periods of the Chinese stock market crash. Panel B, meanwhile, describes

some characteristics about the cycles. The results indicate that the average duration of bull

(bear) periods is 47.5 (12.5) months. Moreover, bull (bear) markets rise (fall) by more than 20

percent.6

[Table 1 about here.]

2.2 Hedge fund database

The hedge fund database used in this study consists of monthly returns, net of all fees, on funds

in the BarclayHedge database that classify themselves as one of the following styles considered

to be “neutral”: market neutral, equity non-hedge, equity hedge, event driven, or fund of hedge

funds.7 According to BarclayHedge’s strategy definitions, market neutral funds are those that

focus on making “concentrated bets”, which are usually based on mispricings, while limiting

general market exposure. These funds achieve their objective through a combination of long

and short positions. Equity hedge funds are funds that are exposed to the market, but hedge

these exposures through short positions of stocks, or through stock options. Equity non-hedge

funds are funds that usually have long exposures to the market. Event-driven funds exploit

pricing inefficiencies that may occur before or after corporate events such as bankruptcy, or

mergers and acquisitions. Funds of hedge funds invest in multiple hedge funds, which may

consist of different strategies.

6The duration of a bull period in Pagan and Sossounov (2003) is defined as Dt = NTP−1
∑T

t=1 St, where
St is a binary variable that takes on 1 when a bull period exists and NTP is the number of peaks. The amplitude
of a cycle is defined as At = NTP−1

∑T
t=1 St∆ lnPt, where Pt is the stock price, or in our case, the stock

market index.
7The choice of BarclayHedge over other databases commonly used in the hedge fund literature (e.g., TASS or

Hedge Fund Research) is mainly motivated by the observation by Joenväärä et al. (2016) that empirical analyses
using this database yield similar results as that from an aggregate database.
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For an individual hedge fund to be included in the sample, it must have at least 48 months of

observations, following Patton (2009). This yields 5,651 active and defunct funds that identify

themselves as “market neutral” during the period January 1994 to December 2016. Because

we perform our estimations using both alive and dead funds, our results are less susceptible

to survivorship bias, which arises when only returns from alive funds are used to understand

hedge fund performance (see Chen and Liang (2007) and references therein). Nevertheless,

we perform the analyses in the paper with alive and dead funds, respectively, and our results do

not change. To minimise the influence of “backfill bias”, which is related to the fact that hedge

funds enter a database with a history of good returns, we consider data starting from January

1999.8 Finally, before subjecting the hedge funds to our analyses, we filter the hedge fund

returns via a MA(4) filter, following Getmansky et al. (2004). We also perform our analyses

with an MA(0) and MA(2) filter. Table 2 presents the number of observations available on

each of the hedge funds in the sample. The median history across hedge fund styles ranges

from 76 to 110 months. Moreover, around 60 percent of funds in our sample consist of dead

hedge funds, while the rest are alive funds.

[Table 2 about here.]

Panel A of Table 3 presents the summary statistics of the hedge fund indices. We find

that, throughout the sample period, the hedge funds in the sample provide an average return

net-of-fees of approximately 0.4 to 0.8 percent per month, with a standard deviation of 0.9 to

3.3 percent, depending on the fund. Conditional on the state, however, market neutral hedge

funds perform the same in both periods, while the other hedge fund styles have a negative

mean return in bear periods than in bull periods. Moreover, the other hedge fund styles appear

to be more volatile in bear periods than in bull periods.

[Table 3 about here.]

2.3 Factors

Panel B of Table 3 presents the summary statistics of the economic factors that we use in

the empirical analysis of the market timing models: the S&P 500 index, the Fama-French

(FF) size and book-to-market factors, and a momentum portfolio similar to Carhart (1997).

8Our index data starts at January 1997, and we estimate our models starting from this period. The results,
which are in the Supplemental Material, remain the same.
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The unconditional market return is 0.6 percent; however, in bear periods, the market does not

perform well, with a mean return of -3.1 percent and a standard deviation of 5 percent. This is

in contrast to its performance in bull periods.

Finally, Table 4 presents the correlation matrices of the market and the hedge funds we

consider. Unconditionally, we find that market neutral hedge funds are the least correlated with

respect to the market. Meanwhile, the other hedge fund styles appear to be positively correlated

with the market return. Moreover, market neutral hedge funds are not highly correlated with

the other hedge fund styles, with the exception of equity hedge and fund of funds. The other

hedge fund styles appear to be highly correlated with each other, though. The correlation

between market neutral hedge funds and the stock market changes conditional on the state,

however. In particular, they are negatively correlated with the market in bear periods, while

they are positively correlated with the market in bull periods. The correlation between other

hedge fund styles and the market remain to be similar, regardless of the time period.

[Table 4 about here.]

3 Modeling dependence

The first objective of this paper is to analyse the dependence that exists between market neutral

hedge funds and the market portfolio. In particular, we aim to differentiate the effect of the fi-

nancial cycle, which is predictable, from tail dependence that cannot be easily predicted. This

is particularly relevant because the type of dependence that exists has different implications

for risk management. On the one hand, the existence of tail dependence implies that hedge

funds are sensitive to extreme left tail events. The existence of state dependence, on the other

hand, implies that there is a persistent, common latent factor that drives the dependence be-

tween hedge funds and the market index; therefore, the occurrence of “extreme left” tail events

become more predictable.

To focus on the dependence structure, we follow Patton (2009) and we model the marginal

distributions and the copula separately. More formally, let {(xft, xmt)}Tt=1, t = 1, . . . , T be

the hedge fund and market returns, respectively. The conditional cumulative joint distribution

function satisfies (Patton (2006)):

F (xft, xmt|st) = Cθct (Ff (xft|st), Fm(xmt|st)|st) ,
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where Cθct is the conditional copula with state-varying parameters θst , st is the state, and

Fi(xit|st) are the marginal c.d.f’s of xit conditional on the state.

As the parameters of interest for this paper are θst , it is unnecessary to model the marginal

distributions. Instead, we obtain a non-parametric estimator of the conditional quantile func-

tion by dividing the sample according to the state and computing the empirical distribution

function:

F̂i(at|st = s) =
1

Ts

Ts∑
t=1

1(xit≤a)1(st=s)

where Ts =
∑

1(st=s).

We model the copula as a Student’s t, which has the following parameterisation:

Cθct(u1, u2|st) =
∫ τ−1

δst
(u1)

−∞

∫ τ−1
δst

(u2)

−∞

1

2π
√
1− δ2st

(
1 +

r2 − 2δstrs+ s2

η−1st (1− δ2st)

)− η−1
st

+1

2

drds (1)

where the copula parameters δst and η−1st are the correlation and degrees of freedom param-

eters respectively, which are allowed to change with the state. This parameterisation provides

the following two advantages. First, it allows the series to be negatively or positively corre-

lated. Second, since it is characterised by two parameters, it accommodates different degrees

of tail dependence regardless of the correlation between the series. Precisely, the degree of

lower tail dependence for a given state equals:

λs := lim
u→0+

Prob(X < F−1f (u)|Y < F−1m (u)) = 2tηs+1

(
−
√
ηs + 1

√
1− δs/

√
1 + δs

)
where we used tη to represent the c.d.f of a Student’s t-distribution with η degrees of freedom.

Nevertheless, this copula has some limitations. By construction it is symmetric; hence,
Cθc(u1, u2)

Cθc(1− u1, 1− u2)
= 1 for all u1 and u2. To assess the validity of the assumption we depict

in Figure 1 the ratio between the copula’s empirical c.d.f and its inverse,
Ĉθc(τ, τ)

Ĉθc(1− τ, 1− τ)
,

which suggests that symmetry is not a far-fetched assumption. The slight deviation for lower

values of τ might be due to the estimation error that increases as τ decreases. 9

[Figure 1 about here.]

We estimate the model via maximum likelihood with and without state dependence. Infer-

ence about the lack of tail dependence, η−1s = 0, however, presents several challenges. First,

9An alternative to the Student’s-t copula considered by Nelsen (2007) is the Gumbel copula, but it presents
too much asymmetry.

8



under the null hypothesis, the parameter of interest lies on the boundary of the parameter space;

this, in turn, invalidates the usual asymptotic inference (Andrews, 1999). Second, the MA fil-

tering and the non-parametric estimation of the quantile function also influence inference. To

tackle these issues, we rely on the parametric bootstrap to test three different hypotheses: (i.)

there is no tail dependence unconditionally, or (ii.) during the bear or (iii.) bull period. These

hypotheses are equivalent to testing if the series are related through a Gaussian copula in the

three different scenarios. Therefore, we use as test statistic the log-likelihood ratio between

a Student’s-t and Gaussian copula. Section 2 of the Supplemental Material contains a brief

description of the bootstrap.

Table 5 shows all the estimated dependence measures. In the first column we present the

estimated correlation parameter from the Student’s t-copula while the third column includes

the same parameter in the case of the Gaussian copula.10 In general, we observe that the latter

is smaller than the former. Therefore, if we fail to take into account the tails of the copula, we

underestimate the dependence between the two series. The size of the tails are given by the

interaction between the degrees of freedom (η) and the correlation parameter (δ), which we

summarise into the tail dependence parameter in the second column. The last column tests the

presence of tail dependence by comparing the model with a Student’s t- and a Gaussian copula

as explained in section 3.

[Table 5 about here.]

The first panel of Table 5 presents the estimated dependence coefficients without condi-

tioning on the cycle. Market neutral hedge funds present a low correlation with the market

(13%), especially if we compare them with other styles considered neutral as well, whose cor-

relation parameter ranges from 67% to 87%. A similar pattern across styles arises in terms

of tail dependence. We find that market neutral hedge funds are those with the smallest tail

dependence (19%) and equity non-hedge funds almost triple that probability. Nonetheless,

the tail dependence parameter is significant for market neutral funds. This result is consis-

tent with Brown and Spitzer (2006), who hinges on parametric tests, but contradicts Patton

(2009)’s findings based on non-parametric tests. The different conclusions might be due to the

effects of cyclicality on each of the methodologies. On the one hand, if we do not consider two

states in a parametric estimation, the non-linear dependence created through the common state

10The Gaussian copula is equivalent to the Student’s t-copula with η−1 = 0.
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creates an overrejection of the tail neutrality hypothesis. On the other hand, non-parametric

tests overweight the left-tail observations which mostly belong to the bad state. Therefore,

the estimated tail dependence parameter is closer to the one of the bear periods than to the

unconditional one.

The previous results conceal an important heterogeneity across different financial states.

During bear periods, the hypothesis of tail neutrality cannot be rejected for any of the different

styles while it is rejected during bull periods which might be the reason underlying the lack of

significance in Patton (2009). This result is consistent with recent empirical results (e.g., Ben-

David et al., 2012; Patton and Ramadorai, 2013) which assert that hedge funds have cut their

exposures to the market during unfavorable periods. This might be due to either one of two

prominent hypotheses. The former is related to the hypothesis that due to funding constraints

or lender pressure, hedge fund managers resort to asset fire sales. The latter reason offered

in the literature stems from the fact that in bear periods, hedge funds move their capital away

from equities to alternative investment opportunities in attempt to time the market.

The heterogeneity across states becomes more prominent in the case of market neutral

funds whose correlation with the market changes sign across states. During bear periods, these

hedge funds become a hedging asset; meanwhile, during bull periods, their returns follow those

of the market. The change in correlation is consistent with hedge fund mangers changing their

positions according to some private signal (Admati et al., 1986). In contrast to market neutral

funds, the correlation for the remaining styles is mostly the same in each period which suggests

that, due to their investment strategies, the managers of these funds are not able to “time the

state”, or if they do, time the state inefficiently.

4 State timing

Market timing models test for the ability of a fund manager to adjust his portfolio’s exposures

after observing a signal about future market returns. The successful market timer increases

the portfolio weights on equities prior to a positive market signal, and decreases the weight on

equities prior to a negative market signal.

The typical market timing models (i.e., Treynor and Mazuy (1966) and Henriksson and

Merton (1981)) rely on a signal on whether the returns on the market portfolio will increase

or decrease.11 As our results in the previous section suggest, market neutral hedge funds seem

11Admati et al. (1986) formalise the Treynor and Mazuy (1966) model by assuming that managers have ex-
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to adjust their exposures with respect to financial conditions. In this regard, we modify the

market timing model of Henriksson and Merton (1981):

rf,t = α +
J∑
j=1

βjxj,t + γrm,tSt + εt (2)

in which βj is the loading on factor j, to test for state timing. The variable St is what we

call the “state timing” term, and is defined as: St = 1(st = bull); that is, once a hedge fund

manager observes a signal that the market is in a bull state, he would increase fund exposure.

The coefficient γ, hence, measures state timing. K = 1 for the single factor market model,

K = 3 for the Fama-French three-factor model. and K = 4 for the Carhart four-factor model.

Before discussing the results of the state timing tests, we present the regressions that study

the abnormal performance of the funds we consider in Table 6. Alphas from most of the hedge

fund indices are positive and significant, with the exception of fund of funds. Most of the funds

in our sample also exhibit a positive loading on the size portfolio, suggesting that most of these

funds invest in small-cap stocks. Meanwhile, market neutral hedge funds, equity hedge funds,

and fund of funds exhibit a positive loading in the momentum portfolio, which implies that

they invest in stocks with good positive performance.

[Table 6 about here.]

Table 7 presents the results from the state timing regressions with index data. The results

indicate that market neutral hedge funds exhibit state timing across model specifications. The

timing coefficients are statistically significant across all regressions. We also find that after

controlling for state timing, the alpha becomes less significant albeit with a smaller magni-

tude, in comparison with the regressions without state timing in Table 6. This result suggests

that a substantial proportion of the aggregate abnormal return can be explained by state timing.

Interestingly, the market beta is statistically insignificant, suggesting that market neutral hedge

funds indeed are able to “neutralise” the market with their trading strategies. Comparing mar-

ket neutral hedge funds with other “neutral” types of hedge funds, only the equity hedge style

appears to exhibit state timing behavior. This result is not surprising, as this style is closest to

market neutral hedge funds in the type of investment objectives it pursues; the main difference

is that equity hedge funds do not aim to neutralise the market.

ponential utility and a Normal distribution for the returns, and show that the market beta is a product of the
manager’s risk tolerance and the precision of his signal quality. Henriksson and Merton (1981) show that a
manager is assumed to time the market by shifting portfolio weights discretely; the corresponding convexity is
modeled via put or call options.
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[Table 7 about here.]

To determine whether our results are robust to the definition of states, we conduct the same

regressions as in equation (2), but varying our state indicator to be that of the NBER recession

and expansion periods. As the results of Table 12 in section 3 of the Supplemental Material

indicate, we find that indeed, market neutral hedge funds and equity hedge funds time the

financial state, while the other hedge fund styles do not.

4.1 Controlling for market, volatility and liquidity timing

Our model of state timing (2) focuses on the adjustment of hedge fund beta in response to

financial cycles. However, hedge fund managers can also time market returns, volatility (Chen

and Liang (2007)) and/or liquidity (Cao et al. (2013)). Because market returns, volatility and

liquidity can vary with the state of the economy, our evidence for state timing can be interpreted

instead as evidence for return timing, volatility timing, or liquidity timing ability. To this end,

we augment the state timing model by estimating the following model specification:

rf,t = α+
J∑
j=1

βjxj,t+γrm,tSt+δrm,tMt+λrm,t(V olt−V ol)+ψrm,t(Liqt−Liq)+εf,t (3)

whereMt is either 1(rm,t > 0) (as in the Henriksson and Merton (1981) market timing model),

or rm,t (as in the Treynor and Mazuy (1966) market timing model), V olt is the market volatility

in month t as measured by the CBOE S&P 500 index option implied volatility (i.e., VIX), and

Liqt is the market liquidity measure of Pástor and Stambaugh (2003). The coefficients γ, δ, λ,

and ψ measure state timing, market timing, volatility timing, and liquidity timing, respectively.

Table 8 presents the results from the estimation with model 3, both with the Treynor and

Mazuy (1966) and Henriksson and Merton (1981) market timing models. The results of both

specifications indicate that even after controlling for return, volatility and liquidity timing, we

still find significant evidence of market neutral hedge funds exhibiting state timing skill. In

fact, the magnitudes of the state timing coefficients are not smaller than those in the main

regressions. While we find some evidence of perverse volatility timing, as indicated by the

negative coefficient on λ, the magnitude is small. Notice as well that in the Treynor and Mazuy

(1966) market timing model, alpha is insignificant, while in the Henriksson and Merton (1981)

market timing model, alpha is statistically significant. While inconclusive, this result suggests

that market neutral hedge funds display stronger timing ability than stock selection ability.
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[Table 8 about here.]

With respect to other hedge fund styles, we find similar results as with that of the baseline

analysis; that is, with the exception of equity hedge, the other hedge fund styles do not seem

to exhibit state timing, even after the addition of controls of other types of timing. The results

are robust to the state indicator, as Table 13 of the Supplemental Material shows.12

4.2 Controlling for illiquid holdings

Getmansky et al. (2004) show that hedge fund returns exhibit serial correlation. One potential

reason for this is because hedge funds typically use illiquid assets that are traded infrequently;

hence, this might lead to biased estimates of timing ability if the extent of stale pricing is

related to the market factor, as has been shown in the context of bond mutual fund data by

Chen et al. (2010). Following Chen and Liang (2007) and Cao et al. (2013), we estimate the

following regression:

rf,t = α +
J∑
j=1

βjxj,t + γrm,tSt + βm,−1rm,t−1 + βm,−2rm,t−2

+ γ−1rm,t−1St−1 + γ−2rm,t−2St−2 + εf,t (4)

where we introduce two lagged market excess returns, and the interaction between the lagged

market returns and the lagged state indicators as additional controls.

As the results in Table 9 indicate, even after controlling for illiquid holdings, the estimates

of contemporaneous timing ability are still significantly different from zero, though the market

lagged returns and the interaction between the marked lagged return and the state indicator pick

up some explanatory power. These results suggest that although there is some thin trading, this

does not significantly affect inference about the timing skills of these funds. While the state

timing coefficient has become significant for other hedge fund styles, the abnormal return

coefficient has become insignificant as well; this result suggests that for these funds, state

timing abilities are able to explain abnormal return performance. Changing the state indicator

to the NBER recession indicator does not alter the results, as Table 14 of the Supplementary

Appendix indicates.

12In Table 15 of the Supplemental Material, we verify whether the hedge fund styles possess the other forms
of timing through tests of return, volatility and liquidity timing, separately. The results of the Carhart four-
factor model estimations indicate that market neutral hedge funds possess return timing. However, this finding is
suspect, as the results of the Fama French three-factor model and the simple timing model (which are not reported
here) do not indicate that these funds exhibit return timing skill.
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[Table 9 about here.]

4.3 Controlling for options trading

Fung and Hsieh (2001) find evidence that some hedge fund strategies can exhibit option-like

returns. As Jagannathan and Korajczyk (1986) show, if a fund invests in options, or in stocks

with option-like payoffs, then it can be misconstrued as a market timer because of options’

nonlinear payoffs. To address the potential non-linearity from options trading, we consider

alternative factor models that include the option factors of Agarwal and Naik (2004). The

factors are constructed from at-the-money and out-of-the-money European put and call options

on the S&P 500 index.

Table 10 presents the results of the estimations for both the single factor model and the

Carhart four-factor model. As the results indicate, our results are robust even after controlling

for potential option trading. These results suggest that our state timing model is not misspeci-

fied.

[Table 10 about here.]

5 Consequences for risk management

Aside from the consequences in terms of the information used by investors, shifts in the de-

pendence structure across states have important implications in terms of risk management. To

illustrate this, we consider how Conditional Value-at-Risk (CVaR) changes depending on the

financial state.13 CVaR is defined as the threshold such that the probability of a return lower

than that threshold equals α given that the return of the market is below the V aRβ:

Prob(−rf < CV aRα,β|rm < F−1m (1− β)) = α

One advantage of this measure is that it relies heavily on the dependence of the two time series,

instead of focusing on the marginal distributions. To compute the CVaR, we first compute the

component that just rely on the copula which we refer to as rank-CVaR:

Prob (Ff (rf ) < rank-CVaRα,β|Fm(rm) < 1− β) = C(rank-CVaRα,β, β)
1− β

= 1− α.

Rank − CV aR measures the dependence between the market and the fund in the left tail of

the distribution. If the variables are independent, Rank − CV aR equals 1 − α. However, if
13Agarwal and Naik (2004) utilise a mean-CVaR framework to study the portfolio allocation decision of hedge

funds. Adrian and Brunnermeier (2016) uses CVaR to define their systemic risk measure, ∆CoV aR
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they present positive dependence, Rank − CV aR is lower than 1 − α whereas it is greater

than 1 − α for those variables that are negatively related. At the same time, in the case of the

Student’s t-copula, if we consider high values of α and β, tail dependence plays a major role;

however, as one of the parameters decreases, the importance of linear correlation increases.

Figure 2a shows that during bear periods, market neutral hedge funds present a Rank −

CV aR greater than 1 − α, which implies a negative dependence with the market. Intuitively,

the probability to obtain a return below the 20% percentile when the market return is lower

than its (1 − α)-percentile is 11%, almost half of the unconditional probability. This result

is driven by the negative correlation present during these periods; actually, if we consider tail

neutrality, the relationship becomes even more negative. On the other hand, during bull states

market neutral funds positively correlate with the market.

[Figure 2 about here.]

Even if the remaining “neutral” styles do not present a strong cyclicality in terms of de-

pendence, Figures 2b-2e provide some insights about the different ingredients of the model.

For example, if we estimate the model without taking into account the states, we do not obtain

the unconditional risk but an overestimation of the risk. In contrast, the difference between the

Gaussian and non-Gaussian measures implies that we underestimate the risk across the left tail

if we do not account for tail risk.

Although Rank − CV aR is useful to characterise the dependence between a hedge fund

and the market, it does not provide a good measure of risk because it disregards that the α-

percentile during a bear period is lower than the same percentile during a bear period. There-

fore, we transform the Rank − CV aR to CV aR by inverting the marginal distribution of

hedge fund returns which we assume follow a Student’s-t.14

As a consequence of the negative correlation, Figure 3a shows that the CV aR during

financial crisis for market neutral hedge funds is higher than during bull periods. If we consider

an investor who needs to hold a −CV aR0.95,0.95 percent of its investment as collateral, she

would hold a 1.1% during bear times but a 2.1% during bear periods. Moreover, if she does

not include the financial state when managing the risk, she would hold 2.4% in every period.

Likewise, if she disregards tail risk and just considers linear correlation, she would hold 0.7%

14Inverting the empirical distribution provide similar qualitative results but requires extrapolation. Other dis-
tributions such as the Gaussian distribution or the generalized Pareto also lead to the same results.
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during bear periods and 1.2% during bull periods. These level of collateral would not cover

the investor against tail risk.

Although the correlation between the other fund styles and the market is almost constant

through the cycle, Figure 3b-3e shows significant differences between bull and bear periods,

especially in the case of event driven funds and fund of funds. This change in risk might be due

to two different reasons: a change in tail dependence or a shift of the marginal distributions. If

the former is the main driver, bull periods would present a lower CV aR which is not the case;

moreover, the parameters from the Gaussian copula would not present differences across state.

Therefore, it is mostly a result of the shift of marginal distributions.

[Figure 3 about here.]

6 Evidence from individual funds

The previous results rely on index data, which provide a view of the market via taking into

account the importance of each fund.15 Additionally, aggregation eliminates part of the id-

iosyncratic risk of each fund which leads to a precise estimation of the relationship of these

funds with the market. However, as our previous analysis cannot identify idiosyncratic tail

risk, we might underestimate tail dependence. Individual level data allow us to measure this

risk and shed some light on the characteristics of funds that time the state.

6.1 Dependence

We estimate the model in section 3 for each fund separately and we perform inference based

on a different bootstrap per fund. Table 11 gathers the cross-sectional average and standard

deviation of the correlation parameter and the degree of tail dependence, and the proportion

of funds for which we reject the null hypothesis of tail neutrality at the 5% significance level.

Consistent with the results on the indexes we find that a significant proportion of the funds

present tail dependence during bull periods, or if we consider constant parameters; but we

cannot reject tail neutrality during bear periods in most of the cases.16

[Table 11 about here.]
15Alternatively, the index results can be interpreted as a portfolio of market neutral hedge funds from the

combination of individual hedge funds.
16Although the average tail dependence does not change across state significantly, its distribution tilts towards

0 which drives the test’s results.

16



The estimation also provides evidence that market neutral hedge funds present lower cor-

relation and tail dependence than the remaining hedge fund styles regardless of the financial

period. Regarding the state variability of the parameters, although the table indicates changes

in correlation across states, the estimates become extremely noisy due to the non-parametric

marginal estimation; therefore, we rely on the timing model to provide some insight to man-

ager’s decisions.17

6.2 State timing

Table 12 presents results for state timing at the individual hedge fund level. Across all models,

we find that approximately 40 to 46 percent of market neutral hedge funds have a significantly

positive abnormal return at the 5% level. Moreover, according to the Fama French 3 factor

model, around 13 percent of funds exhibit superior state timing abilities, while 5 percent of

funds exhibit perverse state timing abilities.

[Table 12 about here.]

In comparison with other hedge fund styles, equity hedge appear to exhibit similar propor-

tions of superior state timers as market neutral hedge funds. Meanwhile, equity non-hedge,

fund of funds and event driven funds appear to have a larger proportion of perverse state timers.

The fact that there are more perverse state timers corroborates the finding in the earlier section

that only equity hedge and market neutral hedge funds exhibit state timing abilities.18

We now examine the relationship between state timing and fund characteristics. Specif-

ically, we regress the state timing coefficients of individual market neutral hedge funds esti-

mated from the four-factor state timing model on fund characteristics. We look at nine fund

attributes, including fund age, fund size, fund management and incentive fees, and dummy

variables for high watermark provisions, fund leverage, fund redemption, offshore fund, and

fund lockups.

Table 13 presents the regression results. We find that there is a relationship between having

a fund lockup period and being a successful state timer. This finding is consistent with the idea

that for some market neutral hedge funds, the imposition of share restrictions (such as fund

17For some funds the marginal estimation is computed using 20 observations which is the minimum number
of observations we require for this analysis.

18We run separate return, volatility and liquidity timing regressions for each of the individual funds in our
sample. The results in Table 40 of the Supplemental Material indicate that market neutral hedge funds are more
likely to be return timers than volatility or liquidity timers.
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lockup periods) provides the manager with greater discretion in the management of the assets

under their investment (Aragon (2007)). Thus, in bull periods, market neutral hedge funds are

able to ride the stock market; in bear periods, however, as these funds have share restrictions,

they are prevented to use asset fire sales to cut back on their losses. Instead, they resort to their

timing skills to manage the portfolio’s risk exposures.

[Table 13 about here.]

6.3 Are dead funds different from alive funds?

To assess how survivorship bias might affect the results, we present the results of the copula

model and the state timing regressions for alive and dead hedge funds, respectively.

Table 14 presents the results of the dependence measures for the copula model. We find

that, for both types of funds, we tend to reject tail dependence in bull periods and in uncon-

ditional periods. We also find that we cannot reject Gaussianity during bear periods. We also

find that for both alive and dead funds, the correlation between the fund and the market is

lower during bear periods than bull periods.

[Table 14 about here.]

Table 15 presents the results of the state timing regressions for the single-factor model.19

It appears that there does not seem to be substantial differences between alive and dead hedge

funds with respect to the proportion of funds that exhibit state timing. In particular, the result

that there are more successful state timers among the market neutral hedge fund and equity

hedge fund styles persists for both alive and dead funds.

[Table 15 about here.]

In sum, we can conclude that our results are not (overly) influenced by the presence (ab-

sence) of “dead” funds in the dataset.

7 Conclusion

In this paper, we explore dependence between hedge funds and the market portfolio. As op-

posed to previous papers, we study this question conditional on financial cycles. This di-
19The complete results for the other timing models are presented in Tables 41 and 42 of the Supplemental

Material.

18



mension is important, as it has been shown that hedge funds are one of the most dynamic

investment vehicles, and thus, their performance is affected by market conditions.

We find evidence that market neutral and other hedge fund styles exhibit tail dependence

during bull periods, but not during bear periods. Moreover, we find that as opposed to other

hedge fund styles, the correlation between market neutral hedge funds and the stock market

changes with the economic state. We link this behavior to the ability of hedge fund managers

to time business cycles, and find strong evidence that market neutral hedge funds are able to

adjust their strategies according to the economic state. We illustrate how disregarding changes

in dependence might lead to inaccurate risk management practices. Finally, we find that our

results on dependence and state timing hold in individual fund data. In particular, we find

that market neutral hedge funds that have lockup periods appear to be better state timers. The

evidence that we find underscores the importance of understanding and incorporating business

cycle conditions in asset management and investment decision making.

Our results lead to several implications for future research. First, the assumption of con-

stant dependence parameters generate severe biases which supports the use of conditioning

variables or more flexible dynamic models such as GAS models (Creal et al., 2013). Sec-

ond, although we show that hedge fund managers are able to time the economic state with

information that cannot be captured by either volatility or liquidity, the precise features of

their information sets remain an open question. A fruitful approach for future research would

be along the lines of the paper by Kacperczyk et al. (2014), who distinguish which types of

information mutual fund managers use to create value.
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Figures

Figure 1: Asymmetry Ratio.

Note: Each solid line of this figure depicts Ĉθc (τ,τ)

Ĉθc (1−τ,1−τ)
using the empirical copula for the

different hedge fund styles. The dashed lines represent the theoretical values of the ratio for
the Student’s-t copula and the Gumbel copula.
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Figure 2: Rank-CVaR

(a) Market neutral

(b) Equity hedge (c) Equity non-hedge

(d) Event driven (e) Fund of funds

No States Bear Bull

Note: Rank-CV aR is defined as Prob (Ff (rf ) < rank-CVaRα,β|Fm(rm) < 1− β) = 1 − α.
Each plot in this figure corresponds to this risk measure for one hedge fund style. The solid
lines consider the case of the Student’s-t copula while the dashed lines correspond to the
Gaussian case. Different colors consider different states (bull, bear or assuming that both
states have the same parameters). β = 95%.
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Figure 3: CVaR

(a) Market neutral

(b) Equity hedge (c) Equity non-hedge

(d) Event driven (e) Fund of funds

No States Bear Bull

Note: CV aR is defined as Prob(rf < CV aRα,β|rm < F−1m (β)) = 1 − α. Each plot in
this figure corresponds to this risk measure for one hedge fund style. The solid lines consider
the case of the Student’s t-copula while the dashed lines correspond to the Gaussian case.
Different colors consider different states (bull, bear or assuming that both states have the same
parameters). β = 95%.
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Tables

Table 1: Bear and bull periods

Panel A: Peaks and Troughs
Peak Trough

9/2000 (3/2001) 9/2002 (3/2001)
11/2007 (12/2007) 2/2009 (6/2009)
5/2011 9/2011
6/2015 9/2015

Panel B: Characteristics
Bull duration 47.5

(0.000)
Bear duration 12.5

(0.008)
Bear amplitude -0.389

(0.000)
Bull amplitude 0.725

(0.000)

Note: The first panel compares the bull and bear periods identified by the Pagan and Sossounov
(2003) algorithm, and that identified by the NBER (in parentheses). The second panel shows
characteristics of bear and bull periods. Duration is in months, while amplitudes are percent
changes. Asymptotic standard errors are in parentheses. The sample period is January 1997 to
December 2016.
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Table 2: Summary statistics on the number of observations

Market Equity Equity Event Fund
neutral hedge non-hedge driven of funds Total

Minimum 56 48 49 59 48 -
0.25 quantile 73 74 61 79 76 -
Median 89 97 76 110 101 -
Mean 101 110 108 120 113 -
0.75 quantile 114 134 148 148 141 -
Maximum 236 240 240 238 240 -
Number of dead funds 132 736 440 174 2,153 3,635
Number of alive funds 78 367 654 82 746 1,927
Total number of funds 210 1,094 1,103 256 2,899 5,562

Note: The sample period is January 1997 to December 2016. Dead funds are those that have
ceased operations during the sample period.
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Table 3: Summary statistics

Panel A: Hedge funds
Mean St. Dev. Skewness Kurtosis

No States

Market neutral 0.004 0.009 0.015 4.538
Equity hedge 0.007 0.021 0.823 7.405
Equity non-hedge 0.008 0.033 -0.609 4.691
Event driven 0.007 0.019 -0.985 6.955
Fund of funds 0.004 0.015 -0.719 7.416

Bear

Market neutral 0.003 0.011 -0.637 3.459
Equity hedge -0.005 0.018 -0.133 2.724
Equity non-hedge -0.015 0.036 -0.299 3.107
Event driven -0.007 0.019 -0.447 2.686
Fund of funds -0.007 0.018 -1.586 6.263

Bull

Market neutral 0.005 0.008 0.516 4.463
Equity hedge 0.011 0.020 1.092 8.517
Equity non-hedge 0.014 0.029 -0.528 5.859
Event driven 0.011 0.017 -1.262 10.978
Fund of funds 0.007 0.013 0.146 6.161

Panel B: Factors
Mean St. Dev. Skewness Kurtosis

No States

Market 0.006 0.044 -0.614 3.972
SMB 0.002 0.035 0.791 11.515
HML 0.003 0.032 0.104 5.439
UMD 0.004 0.054 -1.419 11.890

Bear

Market -0.031 0.050 -0.144 3.022
SMB 0.002 0.032 0.313 2.507
HML 0.007 0.046 0.122 3.686
UMD 0.016 0.066 -1.247 12.928

Bull

Market 0.015 0.037 -0.528 5.859
SMB 0.002 0.035 0.877 12.928
HML 0.001 0.028 0.122 3.686
UMD 0.000 0.050 -1.662 15.487

Note: Market is the return on the S&P 500 index. SMB and HML are the Fama French size
and book-to-market factors, and UMD is the Carhart (1997) momentum factor. Returns are in
percentage points. 28



Table 4: Correlation matrix

Market Equity Equity Event Fund of
Market neutral hedge non-hedge driven funds

No States
Market 1
Market neutral 0.184 1
Equity hedge 0.684 0.517 1
Equity non-hedge 0.852 0.372 0.919 1
Event driven 0.710 0.348 0.831 0.891 1
Fund of funds 0.606 0.531 0.886 0.848 0.856 1

Bear
Market 1
Market neutral -0.183 1
Equity hedge 0.753 0.272 1
Equity non-hedge 0.860 0.098 0.951 1
Event driven 0.616 0.278 0.906 0.880 1
Fund of funds 0.535 0.447 0.823 0.811 0.878 1

Bull
Market 1
Market neutral 0.305 1
Equity-hedge 0.620 0.592 1
Equity non hedge 0.813 0.467 0.910 1
Event driven 0.671 0.356 0.791 0.872 1
Fund of funds 0.538 0.567 0.905 0.831 0.820 1

Note: Market corresponds to the S&P 500 return. Bear and bull states are defined by the
periods in the Pagan and Sossounov (2003) procedure. Data is from January 1999 to December
2016.
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Table 5: Copula Parameters

Student’s-t Copula Gaussian Copula Tail dep.=0

Correlation Tail dependence Correlation p-value
No States

Market neutral 0.130 0.173 0.095 0.000
Equity hedge 0.776 0.334 0.748 0.000
Equity non-hedge 0.873 0.524 0.852 0.000
Event driven 0.741 0.216 0.724 0.060
Fund of funds 0.669 0.293 0.625 0.000

Bear

Market neutral -0.281 0.003 -0.248 0.260
Equity hedge 0.760 0.000 0.730 0.690
Equity non-hedge 0.853 0.000 0.834 0.660
Event driven 0.631 0.000 0.590 0.760
Fund of funds 0.547 0.000 0.504 0.670

Bull

Market neutral 0.226 0.152 0.217 0.000
Equity hedge 0.713 0.276 0.685 0.000
Equity non-hedge 0.830 0.386 0.808 0.000
Event driven 0.663 0.240 0.637 0.060
Fund of funds 0.578 0.219 0.530 0.000

Note: Bear and bull states are defined by the periods in the Pagan and Sossounov (2003) pro-
cedure. The first two columns correspond to the model with a Student’s-t copula. The first one
refers to the correlation parameter while the second one presents the tail dependence coeffi-
cient λ = 2tη+1

(
−
√
η + 1

√
1− δ/

√
1 + δ

)
. The third column corresponds to the correlation

coefficient if we consider a Gaussian copula. The fourth column tests the Gaussian vs the
Student’s-t copula.
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Table 6: Abnormal performance of market neutral hedge funds

α βm βsmb βhml βumd
Market neutral hedge funds
Single factor model 0.002*** 0.037**

(0.001) (0.018)
Fama-French 3 factor model 0.002*** 0.033* 0.027* -0.023

(0.001) (0.018) (0.014) (0.030)
Carhart 4 factor model 0.002*** 0.076*** 0.017 0.013 0.099***

(0.000) (0.013) (0.015) (0.021) (0.013)
Equity hedge
Single factor model 0.004*** 0.320***

(0.001) (0.025)
Fama-French 3 factor model 0.004*** 0.298*** 0.225*** -0.085*

(0.001) (0.020) (0.036) (0.047)
Carhart 4 factor model 0.003*** 0.326*** 0.219*** -0.062 0.064***

(0.001) (0.022) (0.033) (0.039) (0.024)
Equity non-hedge
Single factor model 0.003** 0.634***

(0.001) (0.032)
Fama-French 3 factor model 0.002** 0.606*** 0.331*** -0.042

(0.001) (0.027) (0.032) (0.044)
Carhart 4 factor model 0.002** 0.616*** 0.329*** -0.033 0.024

(0.001) (0.029) (0.034) (0.044) (0.019)

Event driven
Single factor model 0.004*** 0.306***

(0.001) (0.028)
Fama-French 3 factor model 0.003*** 0.295*** 0.187*** 0.047

(0.001) (0.026) (0.025) (0.042)
Carhart 4 factor model 0.003*** 0.290*** 0.188*** 0.043 -0.010

(0.001) (0.028) (0.025) (0.046) (0.018)
Fund of funds
Single factor model 0.001 0.213***

(0.001) (0.030)
Fama-French 3 factor model 0.001 0.200*** 0.135*** -0.039

(0.001) (0.029) (0.026) (0.038)
Carhart 4 factor model 0.001 0.230*** 0.128*** -0.013 0.069***

(0.001) (0.028) (0.022) (0.031) (0.015)

Note: The table shows the abnormal return performance at the index level using the single
factor, Fama-French 3-factor, and the Carhart 4-factor model during the period January 1999
to December 2016. The state indicator is the bear-and-bull indicator of Pagan and Sossounov
(2003). α is the abnormal return, γ is the state timing coefficient, βm is the market return and
βk, k = {smb, hml, umd} are the other market factors. *** - significance at 1% level, ** -
significance at 5% level, * - significance at 10% level.
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Table 7: State timing tests – index fund level

α γ βm βsmb βhml βumd
Market neutral hedge funds
Single factor model 0.002*** 0.097*** -0.023

(0.001) (0.033) (0.028)
Fama French 3 factor model 0.003*** 0.095*** -0.025 0.027* -0.021

(0.001) (0.037) (0.030) (0.015) (0.028)
Carhart 4 factor model 0.001** 0.070*** 0.031 0.019 0.012 0.095***

(0.000) (0.021) (0.019) (0.014) (0.019) (0.011)
Equity hedge
Single factor model 0.003*** 0.061 0.282***

(0.001) (0.044) (0.031)
Fama French 3 factor model 0.005*** 0.078** 0.250*** 0.225*** -0.083*

(0.001) (0.036) (0.023) (0.039) (0.048)
Carhart 4 factor model 0.003*** 0.063* 0.285*** 0.221*** -0.063*

(0.001) (0.034) (0.027) (0.034) (0.036)
Equity non-hedge
Single factor model 0.002* 0.026 0.618***

(0.001) (0.067) (0.053)
Fama French 3 factor model 0.004*** 0.050 0.575*** 0.330*** -0.039

(0.001) (0.052) (0.043) (0.032) (0.043)
Carhart 4 factor model 0.002* 0.049 0.585*** 0.330*** -0.034 0.021

(0.001) (0.054) (0.048) (0.033) (0.042) (0.019)
Event driven
Single factor model 0.003** 0.049 0.276***

(0.001) (0.063) (0.044)
Fama French 3 factor model 0.005*** 0.058 0.259*** 0.185*** 0.050

(0.001) (0.056) (0.044) (0.026) (0.040)
Carhart 4 factor model 0.003** 0.067 0.247*** 0.190*** 0.041 -0.013

(0.001) (0.058) (0.048) (0.025) (0.042) (0.017)
Fund of funds
Single factor model 0.001 -0.017 0.223***

(0.001) (0.065) (0.064)
Fama French 3 factor model 0.003*** -0.010 0.206*** 0.132*** -0.036

(0.001) (0.065) (0.065) (0.028) (0.041)
Carhart 4 factor model 0.001 -0.027 0.247*** 0.127*** -0.013 0.070***

(0.001) (0.061) (0.063) (0.022) (0.032) (0.017)

Note: The table shows the abnormal return and timing abilities at the index level using the
single factor, Fama-French 3 factor, and the Carhart 4-factor model during the period January
1999 to December 2016. The state indicator is the bear-and-bull indicator of Pagan and Sos-
sounov (2003). α is the abnormal return, γ is the state timing coefficient, βm is the market
return and βk, k = {smb, hml, umd} are the other market factors. *** - significance at 1%
level, ** - significance at 5% level, * - significance at 10% level.
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Table 11: Copula parameters for individual funds

Correlation Tail dependence Tail dep.=0

Mean St. Dev. Mean St. Dev. # rejections
No States

Market neutral 0.077 0.203 0.064 0.096 0.167
Equity hedge 0.343 0.274 0.130 0.137 0.267
Equity non-hedge 0.564 0.294 0.228 0.184 0.316
Event driven 0.440 0.194 0.157 0.142 0.313
Fund of funds 0.482 0.200 0.165 0.147 0.294
Total 0.497 0.256 0.168 0.156 0.267

Bear

Market neutral 0.026 0.306 0.099 0.120 0.062
Equity hedge 0.286 0.377 0.121 0.170 0.055
Equity non-hedge 0.533 0.360 0.202 0.231 0.069
Event driven 0.383 0.291 0.189 0.180 0.121
Fund of funds 0.336 0.273 0.162 0.167 0.069
Total 0.393 0.332 0.162 0.184 0.055

Bull

Market neutral 0.081 0.206 0.079 0.104 0.143
Equity hedge 0.334 0.260 0.134 0.149 0.212
Equity non-hedge 0.541 0.292 0.212 0.187 0.266
Event driven 0.402 0.206 0.129 0.145 0.207
Fund of funds 0.433 0.193 0.141 0.138 0.227
Total 0.450 0.247 0.152 0.154 0.212

Note: This table presents the estimated dependence statistics for the different hedge fund styles
without conditioning on the state, conditioning on the bear state and conditioning on the bull
state. The first two columns correspond to the model with a Student’s-t copula. The first one
refers to the correlation parameter while the second one presents the tail dependence coeffi-
cient λ = 2tη+1

(
−
√
η + 1

√
1− δ/

√
1 + δ

)
. The third column corresponds to the correlation

coefficient if we consider a Gaussian copula. The fourth column tests the Gaussian vs the
Student’s-t copula.
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Table 12: State timing for individual funds

%of (+) and % of (+) and % of (-) and
significant α significant γ significant γ

Market neutral hedge funds
Single factor 0.462 0.129 0.043
Fama French 3 factor 0.457 0.133 0.057
Carhart 4 factor 0.433 0.100 0.048

Equity hedge
Single factor 0.411 0.124 0.074
Fama French 3 factor 0.381 0.127 0.076
Carhart 4 factor 0.373 0.121 0.079

Equity non-hedge
Single factor 0.307 0.108 0.131
Fama French 3 factor 0.285 0.117 0.149
Carhart 4 factor 0.293 0.112 0.162

Event driven
Single factor 0.609 0.070 0.191
Fama French 3 factor 0.570 0.063 0.199
Carhart 4 factor 0.566 0.055 0.207

Fund of funds
Single factor 0.417 0.035 0.208
Fama French 3 factor 0.415 0.050 0.249
Carhart 4 factor 0.385 0.034 0.236

Note: The following table shows abnormal return and return timing abilities at the fund level
using the single-factor, Fama French three-factor, and the Carhart four-factor models during
the period of January 1999 to December 2016. The state indicator is the bear-and-bull indicator
of Pagan and Sossounov (2003).
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Table 13: Timing ability and market neutral hedge fund characteristics

Variable Coefficient (Std. Err.)
High watermark (dummy) 0.024 (0.070)
Fund size (in logs) 0.008 (0.006)
Fund management fee (in percent) -0.009 (0.028)
Fund incentive fee (in percent) -0.003 (0.003)
Fund minimum investment (in logs) -0.001 (0.007)
Offshore fund (dummy) 0.021 (0.029)
Fund age (in logs) -0.046 (0.033)
Fund leverage (dummy) -0.068 (0.074)
Fund redemption (dummy) -0.039 (0.050)
Fund lockup (dummy) 0.070 (0.034)
Intercept 0.243 (0.216)

N 193
R2 0.062

Note: This regression shows the relationship between market neutral hedge funds’ state timing
abilities and fund characteristics. The dependent variable is the state timing coefficient from
the Carhart 4-factor model for individual funds.

38



Table 14: Copula model results for dependence and correlation – dead and alive hedge funds

Proportion of rejections Average correlation
Tail dependence = 0

Bear Bull No states Bear Bull No states
Dead funds
Market neutral hedge funds 0.091 0.174 0.197 0.030 0.090 0.083
Equity hedge 0.049 0.239 0.255 0.301 0.320 0.331
Equity non-hedge 0.091 0.277 0.318 0.501 0.509 0.529
Event driven 0.132 0.218 0.310 0.374 0.394 0.430
Fund of funds 0.063 0.207 0.261 0.327 0.405 0.456

Alive funds
Market neutral hedge funds 0.026 0.077 0.090 -0.012 0.071 0.056
Equity hedge 0.019 0.104 0.120 0.443 0.412 0.420
Equity non-hedge 0.018 0.124 0.147 0.706 0.604 0.622
Event driven 0.049 0.098 0.122 0.506 0.445 0.466
Fund of funds 0.005 0.112 0.144 0.462 0.526 0.534

Note: Bear and bull states are defined by the state indicator of Pagan and Sossounov (2003).
The first three columns correspond to the test of the Gaussian vs. the Student’s-t copula. The
subsequent three columns correspond to the average correlation between the individual hedge
funds in the dead and alive subsample.
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Table 15: State timing – dead and alive hedge funds

%of (+) and % of (+) and % of (-) and
significant α significant γ significant γ

Dead funds
Market neutral hedge funds 0.386 0.106 0.053
Equity hedge 0.383 0.120 0.090
Equity non-hedge 0.280 0.111 0.123
Event driven 0.569 0.075 0.138
Fund of funds 0.414 0.041 0.199

Alive funds
Market neutral hedge funds 0.590 0.167 0.026
Equity hedge 0.466 0.134 0.044
Equity non-hedge 0.349 0.103 0.142
Event driven 0.695 0.061 0.305
Fund of funds 0.426 0.018 0.235

Note: The following table shows abnormal return and state timing abilities at the fund level
using the single-factor model during the period of January 1999 to December 2016. The state
indicator is the bear-and-bull indicator of Pagan and Sossounov (2003).
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